Лабораторная работа № 4 Измерение и исследование ВАХ и параметров стабилитронов

1. Цель лабораторной работы

Целью лабораторной работы является закрепление теоретических знаний о физических принципах работы и определяемых ими характеристиках и параметрах полупроводниковых стабилитронов путем их экспериментального исследования с помощью измерительных средств аппаратно-программного комплекса «Электроника».

5. Задание для экспериментального исследования вольт-амперных характеристик и параметров стабилитронов

С помощью средств АПК УД «Электроника» измерьте вольт-амперную характеристику стабилитрона, а также его нагрузочные характеристики и характеристики стабилизации при заданном балластном сопротивлении и различных сопротивлениях нагрузки. По измеренным характеристикам определите статические и дифференциальные сопротивления стабилитрона в заданных точках ВАХ и значения коэффициентов и границ стабилизации, соответствующих разным сопротивлениям нагрузки.

Порядок выполнения задания

5.1. Выполните соединение с сервером с титульного экрана аппаратнопрограммного комплекса «Электроника», нажав клавишу «Подключение».

Выберите исследуемый прибор – «Стабилитрон», лабораторную работу – «Измерение и исследование ВАХ», тип стабилитрона и номер индивидуального варианта.

Откройте лицевую панель виртуального лабораторного стенда, нажав клавишу «Начать выполнение».

5.2. Ознакомьтесь с лицевой панелью виртуального лабораторного стенда, с отображаемой на нем схемой измерения.

Проведите измерения в соответствии с ниже приводимыми заданиями (пунктами выполнения лабораторной работы).

5.3. Выполните измерение прямой ветви ВАХ стабилитрона в автоматическом режиме при отключенных внешних сопротивлениях нагрузки.

Указания по проведению измерений и сохранению полученных результатов

Выберите режим измерения «Автоматический». Отключите внешние

сопротивления нагрузки. Установите значения параметров автоматического измерения: $E_{\text{нач}} = 0$, $E_{\text{кон}} = 10$ B, dE = 0.25 B, $I_{\text{изм max}} \approx I_{\text{ст max}}$ /2, но не более 45 мА.

Проведите измерение.

После успешного завершения измерения последовательно просмотрите графики выводимых зависимостей: $U_{ct} = f(E)$, $I_{ct} = f(E)$, $I_{ct} = f(U_{ct})$ (BAX). С помощью курсора определите на прямой ветви BAX $I_{ct} = f(U_{ct})$ приближенное значение порогового напряжения (напряжения изгиба) $U_{пор}$.

Проведите курсорные измерения в трех точках ВАХ: в точке порогового напряжения (изгиба), которой соответствует некоторое значение ЭДС $E_{пор}$, в точке, соответствующей $E_{кон}$, и в точке, соответствующей ($E_{пор} + E_{кон}$)/2. Измеренные значения E, I_{ct} , U_{ct} , R_{ct} , r_{d} запишите в память цифрового индикатора курсорных измерений.

Сохраните для отчета показания цифрового индикатора и график измеренной прямой ветви ВАХ стабилитрона.

5.4. Выполните измерение обратной ветви ВАХ стабилитрона в ручном режиме при отключенных внешних сопротивлениях нагрузки. Измерения проведите для значений ЭДС *E* от $E_{\text{нач}}$ до нуля с шагом dE = 1 В. Значение $E_{\text{нач}}$ определите исходя из следующих условий и соотношений: $E_{\text{нач}} = -10$ В, если максимальный ток стабилитрона $I_{\text{ст max}} > 25$ мА или $E_{\text{нач}} = -I_{\text{ст max}}R_6 - U_{\text{ст max}}$ при $I_{\text{ст max}} < 25$ мА; $R_6 = 200$ Ом.

Указания по проведению измерений и сохранению полученных результатов

Выберите режим измерения «Ручной». Отключите внешние сопротивления нагрузки.

Установите с помощью движка или клавиатуры значение ЭДС источника $E = E_{\text{нач}}$.

Проведите измерение, нажав на клавишу «Измерение».

Убедитесь в появлении измеренной точки ВАХ в окне графики. Полученные значения тока и напряжения зафиксируйте в памяти цифрового индикатора и в окне графики путем нажатия кнопки «Запись». Установите с помощью движка или с клавиатуры значение $E = E_{\text{нач}} + dE$. Проведите измерение.

Убедитесь в появлении второй точки ВАХ в окне графики и второй строки данных на цифровом индикаторе. Результаты измерения зафиксируйте в памяти цифрового индикатора и в окне графики нажатием кнопки «Запись».

Продолжите измерения, уменьшая (по модулю) ЭДС источника *E* с шагом *dE* и фиксируя результаты каждого измерения на цифровом и графическом индикаторах.

По графику ВАХ определите минимальное по модулю значение ЭДС $|E/_{min}$, при котором наблюдается резкий излом ВАХ и быстрое уменьшение (по модулю) тока стабилитрона до нуля. Запишите в рабочую тетрадь (или в

формируемый в процессе выполнения работы электронный отчет) соответствующие этой точке минимальные значения тока стабилизации *I*_{ст min} и напряжения стабилизации *U*_{ст min} стабилитрона.

Сохраните для отчета показания цифрового индикатора и график измеренной в ручном режиме обратной ветви ВАХ.

Выведите в окно графики зависимость $U_{cr} = f(E)$, соответствующую характеристике стабилизации стабилитрона при $R_{\rm H} = \infty$. Определите границы области стабилизации $|E/_{\rm min}$, $|E/_{\rm max}$, в которых напряжение стабилитрона изменяется в допустимых пределах U_{cr} min, U_{cr} max относительно номинального значения $U_{cr. \rm HOM}$. Запишите их значения в рабочую тетрадь (или в формируемый в процессе выполнения работы электронный отчет).

Сохраните для отчета график $U_{ct} = f(E)$.

5.5. Выполните измерение обратной ветви ВАХ стабилитрона в автоматическом режиме при отключенных внешних сопротивлениях нагрузки. Измерения проведите для значений ЭДС *E* от $E_{\text{нач}}$, определенного в п. 5.4, до $E_{\text{кон}} = 0$ с шагом dE = 0,25 В.

Указания по проведению измерений и сохранению полученных результатов

Выберите режим измерения «Автоматический». Отключите внешние сопротивления нагрузки. Установите значения параметров автоматического

измерения: $E_{\text{кон}} = 0$, $E_{\text{нач}}$, определенное в <u>п. 5.4</u>, dE = 0,25 В, $I_{\text{изм max}} \approx I_{\text{ст max}}$ /2, но не более 45 мА. Проведите измерение.

После успешного завершения измерения последовательно просмотрите графики выводимых зависимостей: $U_{cr} = f(E)$, $I_{cr} = f(E)$, $I_{cr} = f(U_{cr})$ (BAX). С помощью курсора определите нижнюю границу стабилизации $|E/_{min}$, соответствующую резкому излому обратной ветви ВАХ.

Проведите курсорные измерения в трех точках ВАХ, соответствующих значениям $E = |E/_{\text{min}}$; $E = E_{\text{нач}}/2$; $E = E_{\text{нач}}$. Измеренные значения E, $I_{\text{ст}}$, $U_{\text{ст}}$, $R_{\text{ст}}$, $r_{_{\text{д}}}$ запишите в память цифрового индикатора курсорных измерений.

Сохраните для отчета показания цифрового индикатора и график автоматически измеренной обратной ветви ВАХ стабилитрона.

Выведите поочередно графики зависимостей статического и дифференциального сопротивлений стабилитрона $R_{ct} = f(I_{ct}), r_{ct} = f(I_{ct})$ от тока стабилитрона I_{ct} .

Сохраните для отчета выводимые графики.

Выведите в окно графики зависимость $U_{ct} = f(E)$, соответствующую характеристике стабилизации стабилитрона при $R_{\rm H} = \infty$. Определите с помощью курсора границы области стабилизации $|E/_{\rm min}$, $|E/_{\rm max}$, в которых напряжение стабилитрона изменяется в небольших пределах относительно номинального значения $U_{\rm ct. HOM}$. Запишите их значения в рабочую тетрадь или в формируемый в процессе выполнения работы электронный отчет.

Сохраните для отчета график $U_{ct} = f(E)$.

Задание для обработки результатов измерения по <u>п. 5.5</u>

По результатам измерения рассчитайте значение коэффициента стабилизации при $R_{\rm H} = \infty$.

5.6. Выполните измерение характеристик стабилизации $U_{cr} = f(E)$ в автоматическом режиме при различных сопротивлениях нагрузки.

Указания по проведению измерений и сохранению полученных результатов

Выберите режим измерения «Автоматический». Установите значения параметров автоматического измерения те же, что и в <u>п. 5.5</u>.

Проведите измерения характеристик стабилизации при поочередно подключаемых сопротивлениях нагрузки $R_{\rm H} = 200, 500, 1000$ Ом.

Определите с помощью курсора границы области стабилизации $|E/_{min}$, $|E/_{max}$, соответствующие различным сопротивлениям нагрузки. Запишите их значения в рабочую тетрадь или в формируемый в процессе выполнения работы электронный отчет.

Сохраните для отчета график $U_{cr} = f(E)$.

5.7. Выполните в ручном режиме измерение нагрузочных характеристик $U_{cr} = f(I_{\rm H})$, соответствующих зависимости напряжения на стабилитроне (нагрузке) от тока (сопротивления) нагрузки при постоянном значении ЭДС $E = E_{\rm Hav}$ min, определенном в п. 6.4.

Указания по проведению измерений и сохранению полученных результатов

Выберите режим измерения «Ручной». Установите ЭДС источника $E = E_{\text{нач min}}$.

Проведите измерения, поочередно подключая сопротивления нагрузки $R_{\rm H} = 200, 500, 1000$ Ом, $R_{\rm H} = \infty$ и фиксируя результаты измерения на цифровом и графическом индикаторах.

Сохраните для отчета показания цифрового индикатора и график измеренной нагрузочной характеристики $U_{cr} = f(I_{H})$.

Выведите график зависимости $I_{ct} = f(I_{H})$ и также сохраните его для отчета.

6. Требования к оформлению отчета по лабораторной работе

Отчет по лабораторной работе оформляется в виде электронного документа в текстовом редакторе *Word*.

В отчете должны быть приведены:

- 1. Цель выполнения лабораторной работы.
- 2. Вид лицевой панели виртуального лабораторного стенда.
- 3. Результаты экспериментального исследования по <u>п. 5</u>, включающие все сохраненные графики и рассчитанные значения.

4. Выводы по лабораторной работе о степени соответствия результатов экспериментального исследования теоретическим и физическим представлениям и закономерностям.

Контрольные вопросы

1. Какой полупроводниковый прибор называется стабилитроном?

2. Объяснить физическую суть туннельного, лавинного и теплового пробоев.

3. Что такое напряжение стабилизации?

4. Как напряжение стабилизации зависит от уровня легирования *p*-и*n*-областей?

5. Какой материал является основным для производства стабилитронов и почему?

6. Как по вольт-амперной характеристике стабилитрона определить его дифференциальное сопротивление?

7. Какими предельными и номинальными параметрами характеризуются стабилитроны?

- 8. Что такое рабочая область стабилизации стабилитрона?
- 9. Как зависят характеристики стабилизации от сопротивления нагрузки?

Лабораторная работа №6 Исследование работы стабилитрона на переменном токе

1. Цель лабораторной работы

Целью лабораторной работы является закрепление теоретических знаний о характеристиках, параметрах и определяемых ими применениях полупроводниковых стабилитронов путем экспериментального исследования их с помощью измерительных средств аппаратно-программного комплекса «Электроника».

5. Задание для экспериментального исследования работы стабилитрона на переменном токе

С помощью средств АПК УД «Электроника» необходимо измерить осциллограммы напряжений токов исследуемой И В схеме полупроводникового параметрического стабилизатора напряжения при заданных сопротивлениях нагрузки, входной постоянной ЭДС и параметрах (амплитуде и частоте) входной переменной ЭДС. Обосновать результаты измерения посредством вольт-амперной характеристики стабилитрона. Определить области стабилизации и соответствующие ИМ значения коэффициентов стабилизации стабилизатора напряжения.

Порядок выполнения задания

5.1. Выполните соединение с сервером с титульного экрана аппаратнопрограммного комплекса «Электроника», нажав клавишу «Подключение».

Выберите исследуемый прибор – «Стабилитрон», лабораторную работу «Исследование работы прибора на переменном токе», тип стабилитрона и номер индивидуального варианта.

Откройте лицевую панель виртуального лабораторного стенда, нажав клавишу «Начать выполнение».

5.2. Ознакомьтесь по лицевой панели стенда с исследуемой схемой стабилизатора напряжения, лицевой панелью измерителя ВАХ, цифрового осциллографа, схемой подключения каналов осциллографа, с выведенными по умолчанию значениями параметров генераторов ЭДС.

5.3. Выполните измерение осциллограмм напряжений в исследуемой схеме стабилизатора напряжения при отключенной нагрузке ($R_{\rm H} = \infty$), нулевом значении постоянной составляющей и максимальной амплитуде низкочастотной переменной составляющей ЭДС на входе.

Указания по проведению измерений, сохранению и обработке полученных результатов

5.3.1. Установите параметры настройки осциллографа: входы каналов – открытые, число периодов развертки сигнала – 2. В процессе работы число периодов развертки сигнала можно изменить для лучшей визуализации сигналов и проведения курсорных измерений.

Проведите измерение BAX стабилитрона, нажав кнопку включения автоматического измерителя BAX. При успешном завершении измерения ознакомьтесь с выведенным графиком измеренной BAX.

Установите ЭДС источника постоянной составляющей $E_0 = 0$, частоту колебаний источника переменной ЭДС F = 100 Гц, сопротивление нагрузки $R_{\rm H} = \infty$.

Задайте максимально возможное значение амплитуды источника переменной ЭДС $E_m = E_{m \text{ max}}$, при котором максимальный ток стабилитрона не превысит предельное значение $I_{\text{ст max}}$.

Измерьте осциллограммы напряжений в контрольных точках схемы.

5.3.2. Проведите курсорные измерения по выведенным осциллограммам.

Путем перемещения вертикального курсора по осциллограммам напряжений посмотрите, как изменяется положение мгновенной рабочей точки на ВАХ стабилитрона и показания цифровых индикаторов измерителя ВАХ.

Определите нижнюю границу области стабилизации для ЭДС $|E|_{min}$, которой соответствует точка изгиба обратной ветви ВАХ и нижние измеренные границы стабилизации для модулей тока и напряжения стабилитрона $I_{cт.изм min}$, $U_{cт.изм min}$.

Для удобства анализа и курсорных измерений можно одновременно отображать на экране осциллограммы сигналов одного, двух или трех каналов путем выбора их с помощью кнопок «Канал 1», «Канал 2», «Канал 3» лицевой панели осциллографа.

Запишите в рабочую тетрадь полученные результаты курсорных измерений.

Сохраните для отчета лицевую панель виртуального стенда и осциллограммы напряжений совместно с графиками ВАХ и показаниями цифровых курсорных индикаторов и индикаторов измерителя ВАХ.

5.4. Выполните измерение осциллограмм напряжений в исследуемой схеме стабилизатора напряжения при отключенной нагрузке ($R_{\rm H} = \infty$), заданном (рабочем) значении ЭДС постоянной составляющей и заданной амплитуде И частоте переменной составляющей ЭДС на входе, имитирующей нестабильность входного ИЛИ пульсации напряжения стабилизатора.

Указания по проведению измерений, сохранению и обработке полученных результатов

5.4.1. Установите параметры настройки осциллографа по п. 5.3.1.

Рассчитайте значения ЭДС источника постоянной составляющей ЭДС $E_0 = -(E_m \max + |E|_{\min})/2$ и амплитуду переменной ЭДС $E_m = (E_m \max - |E|_{\min})/2$. Например, при $E_m \max = 10$ B, $|E|_{\min} = 5$ B получим: $E_0 = -7,5$ B, $E_m = 2,5$ B.

Установите найденные значения параметров ЭДС источников E_0 , E_m , а также значение частоты F = 100 Гц и сопротивления нагрузки $R_{\rm H} = \infty$.

Измерьте осциллограммы напряжений в контрольных точках схемы.

5.4.2. Проведите курсорные измерения по выведенным осциллограммам.

С помощью курсорных измерений определите максимальные и минимальные измеренные значения модулей тока и напряжения стабилитрона $I_{\text{ст.изм}}$ min, $U_{\text{ст.изм}}$ min, $I_{\text{ст.изм}}$ max, $U_{\text{ст.изм}}$ и номинальные их значения при $E = E_0$: $I_{\text{ст.изм.ном}}$, $U_{\text{ст.изм.ном}}$ (координаты рабочей точки при $R_{\text{H}} = \infty$).

Запишите полученные результаты в рабочую тетрадь.

Сохраните для отчета осциллограммы напряжений совместно с графиками ВАХ и показаниями цифровых курсорных индикаторов и индикаторов измерителя ВАХ.

Задание для обработки результатов измерений по п. 5.4 По результатам измерения рассчитайте:

абсолютную $\Delta U_{ct} = U_{ct.изм max} - U_{ct.изм min}$ и относительную $\delta U_{ct} = \Delta U_{ct}/U_{ct.изм.ном}$ нестабильности выходного напряжения стабилизатора;

коэффициент стабилизации напряжения: $K_{\rm cr} = \Delta U_{\rm cr}/2E_m$.

5.6. Выполните измерение осциллограмм напряжений в исследуемой схеме стабилизатора напряжения при сопротивлениях нагрузки $R_{\rm H} = 1000$, 500 и 200 Ом, заданном (рабочем) значении ЭДС постоянной составляющей и заданной амплитуде и частоте переменной составляющей ЭДС на входе, имитирующей нестабильность или пульсации входного напряжения стабилизатора.

Указания по проведению измерений, сохранению и обработке полученных результатов

5.6.1. Установите параметры настройки осциллографа по п. 5.3.1. Подключите нагрузку $R_{\rm H} = 1000$ Ом.

Для заданного сопротивления нагрузки по измеренному в п. 5.5.2 значению $|E|_{\text{min}}$ рассчитайте значения ЭДС источника постоянной составляющей ЭДС $E_0 = -(E_{m \max} + |E|_{\min})/2$ и амплитуду переменной ЭДС $E_m = (E_{m \max} - |E|_{\min})/2$.

Установите найденные значения параметров ЭДС источников E_0 , E_m , а также значение частоты $F = 100 \Gamma$ ц.

Измерьте осциллограммы напряжений в контрольных точках схемы.

5.6.2. Проведите курсорные измерения по выведенным осциллограммам.

С помощью курсорных измерений определите максимальные и

минимальные измеренные значения модулей тока и напряжения стабилитрона $I_{\text{ст.изм}}$ min, $U_{\text{ст.изм}}$ min, $I_{\text{ст.изм}}$ max, $U_{\text{ст.изм}}$ и номинальные их значения при $E = E_0$: $I_{\text{ст.изм.ном}}$, $U_{\text{ст.изм.ном}}$ (координаты рабочей точки при $R_{\text{H}} = 1000$ Ом).

Запишите полученные результаты в рабочую тетрадь.

Сохраните для отчета осциллограммы напряжений совместно с графиками ВАХ и показаниями цифровых курсорных индикаторов.

5.6.3. Повторите измерения по пп. 5.6.1, 5.6.2 для сопротивлений нагрузки $R_{\rm H} = 500$ и 200 Ом.

Задание для обработки результатов измерений по п. 5.6

По результатам измерения для каждого сопротивления нагрузки рассчитайте:

абсолютную $\Delta U_{ct} = U_{ct.изм max} - U_{ct.изм min}$ и относительную $U_{ct} = \Delta U_{ct}/U_{ct.изм.ном}$ нестабильности выходного напряжения стабилизатора;

коэффициент стабилизации напряжения $K_{cr} = \delta U_{cr}/2E_m$.

Сделайте вывод о возможных пределах изменения нагрузки для данного стабилитрона.

6. Требования к оформлению отчета по лабораторной работе

Отчет по лабораторной работе оформляется в виде электронного документа в текстовом редакторе *Word*.

В отчете должны быть приведены:

1. Цель выполнения лабораторной работы.

2. Вид лицевой панели виртуального лабораторного стенда.

3. Результаты экспериментального исследования по <u>п. 5</u>, включающие все сохраненные графики и рассчитанные значения.

4. Выводы по лабораторной работе о степени соответствия результатов экспериментального исследования теоретическим и физическим представлениям и закономерностям.

Контрольные вопросы

1. Каково основное назначение стабилитрона и какими его свойствами оно обусловлено?

2. Каково назначение балластного резистора в схеме стабилизатора напряжения?

3. Можно ли включать стабилитрон в электрическую цепь без балластного резистора?

4. В чем заключается работа стабилитрона в случае нестабильного источника входного напряжения?

5. Каковы условия выбора рабочей точки стабилитрона на рабочем

участке ВАХ?

6. В чем заключается работа стабилитрона в случае нестабильного сопротивления нагрузки?

7. Можно ли использовать стабилитрон в качестве обычного диода?

8. От чего зависит диапазон стабилизируемых напряжений стабилизатора напряжения?

ВАРИАНТЫ ЗАДАНИЙ

Номер варианта	Вид исследования	Тип полупроводникового прибора	Номер прибора
1	2	3	4
СТАБИЛИТРОН			
1		КС147А	1
2		КС147А	2
3		КС147А	3
4	Экспериментальные	КС147А	4
5	исследования	КС133А	1
6		КС133А	2
7		КС133А	3
8		КС133А	4